Members of the plant-specific gene families IQD/SUN, OFP and YABBY are thought to play important roles in plant growth and development. YABBY family members are involved in lateral organ polarity and growth; OFP members encode transcriptional repressors, whereas the role of IQD/SUN members is less clear. The tomato fruit shape genes SUN, OVATE, and FASCIATED belong to IQD/SUN, OFP and the YABBY gene family, respectively. A gene duplication resulting in high expression of SUN leads to elongated fruit, whereas a premature stop codon in OVATE and a large inversion within FASCIATED control fruit elongation and a flat fruit shape, respectively. In this study, we identified 34 SlSUN, 31 SlOFP and 9 SlYABBY genes in tomato and identified their position on 12 chromosomes. Genome mapping analysis showed that the SlSUN, SlOFP, and SlYABBY genes were enriched on the top and bottom segments of several chromosomes. In particular, on chromosome 10, a cluster of SlOFPs were found to originate from tandem duplication events. We also constructed three phylogenetic trees based on the protein sequences of the IQ67, OVATE and YABBY domains, respectively, from members of these families in Arabidopsis and tomato. The closest putative orthologs of the Arabidopsis and tomato genes were determined by the position on the phylogenetic tree and sequence similarity. Furthermore, expression analysis showed that some family members exhibited tissue-specific expression, whereas others were more ubiquitously expressed. Also, certain family members overlapped with known QTLs controlling fruit shape in Solanaceous plants. Combined, these results may help elucidate the roles of SUN, OFP and YABBY family members in plant growth and development.