Loss of Cftr function exacerbates the phenotype of Na(+) hyperabsorption in murine airways

Am J Physiol Lung Cell Mol Physiol. 2013 Apr 1;304(7):L469-80. doi: 10.1152/ajplung.00150.2012. Epub 2013 Feb 1.

Abstract

Airway surface hydration depends on the balance between transepithelial Na(+) absorption and Cl(-) secretion. In adult mice, absence of functional cystic fibrosis transmembrane conductance regulator (Cftr) fails to recapitulate human cystic fibrosis (CF) lung disease. In contrast, overexpression of the epithelial Na(+) channel β subunit in transgenic mice (βENaC-Tg) produces unregulated Na(+) hyperabsorption and results in CF-like airway surface dehydration, mucus obstruction, inflammation, and increased neonatal mortality. To investigate whether the combination of airway Na(+) hyperabsorption and absent Cftr-mediated Cl(-) secretion resulted in more severe lung pathology, we generated double-mutant ΔF508 CF/βENaC-Tg mice. Survival of ΔF508 CF/βENaC-Tg mice was reduced compared with βENaC-Tg or ΔF508 CF mice. Absence of functional Cftr did not affect endogenous or transgenic ENaC currents but produced reduced basal components of Cl(-) secretion and tracheal cartilaginous defects in both ΔF508 CF and ΔF508 CF/βENaC-Tg mice. Neonatal ΔF508 CF/βENaC-Tg mice exhibited higher neutrophilic pulmonary inflammation and club cell (Clara cell) necrosis compared with βENaC-Tg littermates. Neonatal ΔF508 CF/βENaC-Tg mice also exhibited spontaneous bacterial infections, but the bacterial burden was similar to that of βENaC-Tg littermates. Adult ΔF508 CF/βENaC-Tg mice exhibited pathological changes associated with eosinophilic crystalline pneumonia, a phenotype not observed in age-matched βENaC-Tg mice. Collectively, these data suggest that the combined abnormalities in Na(+) absorption and Cl(-) secretion produce more severe lung disease than either defect alone. Airway cartilage abnormalities, airway cell necrosis, and exaggerated neutrophil infiltration likely interact with defective mucus clearance caused by βENaC overexpression and absent CFTR-mediated Cl(-) secretion to produce the increased neonatal mortality observed in ΔF508 CF/βENaC-Tg mice.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorption / genetics
  • Animals
  • Chlorides / metabolism
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Epithelial Sodium Channels / genetics
  • Epithelial Sodium Channels / metabolism*
  • Humans
  • Ion Transport / genetics
  • Lung / metabolism*
  • Lung / pathology
  • Mice
  • Mice, Transgenic
  • Necrosis
  • Neutrophil Infiltration / genetics
  • Neutrophils / metabolism
  • Neutrophils / pathology
  • Pneumonia / genetics
  • Pneumonia / metabolism
  • Pneumonia / pathology
  • Pulmonary Eosinophilia / genetics
  • Pulmonary Eosinophilia / metabolism*
  • Pulmonary Eosinophilia / pathology
  • Sodium / metabolism*

Substances

  • Chlorides
  • Epithelial Sodium Channels
  • Scnn1b protein, mouse
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Sodium