Sonic hedgehog (Shh) has been found to regulate the angiogenic growth factor such as VEGF, Ang-1, and Ang-2 during ischemic insults, but the underlying mechanism is not fully understood. In this study, we employed oxygen-glucose deprivation (OGD) in astrocytes to mimic the ischemia in vitro. We found that OGD could induce the expressions of VEGF, Ang-1, and Ang-2, with the expression of Shh signaling components increased. Moreover, inhibiting the Shh signaling pathway with 5EI, a specific antibody, could decrease the expressions of VEGF, Ang-1, and Ang-2. Furthermore, the administration of exogenous Shh could induce the expressions of VEGF, Ang-1, and Ang-2 in astrocytes. The results of silencing Gli-1, or NR2F2, exhibited that exogenous Shh could regulate the expressions of VEGF, Ang-1, and Ang-2 in astrocytes by activating the NR2F2, but not the Gli-1. These results suggested that Shh could regulate the angiogenic growth factor after ischemic insults in astrocytes, and the regulation was partially mediated by the NR2F2.