Bovine herpesvirus 1 (BoHV-1) is a well-known disease-causing agent in cattle. There is little known detailed information on viral behavior with emphasis on host invasion at primary replication sites such as the mucosa of the upper respiratory tract. Therefore, an in vitro system of bovine upper respiratory tract (bURT) mucosa explants was set up to study BoHV-1 molecular/cellular host-pathogen interactions. We performed a thorough morphometrical analysis (epithelial integrity, basement membrane continuity, and lamina propria integrity) using light microscopy and transmission electron microscopy. We applied a terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining as a viability test. Bovine upper respiratory tract mucosa explants were maintained in culture for up to 96 hours without any significant changes in morphometry and viability. Next, bURT mucosa explants were infected with BoHV-1 (Cooper) and collected at 0, 24, 48, and 72 hours postinoculation (p.i.). Using a quantitative analysis system to measure plaque latitude and invasion depth, we assessed dissemination characteristics in relation to elapsed time p.i. and found a plaquewise spread of BoHV-1 across the basement membrane as early as 24h p.i., similar to pseudorabies virus (PRV). Moreover, we observed that BoHV-1 exhibited an increased capacity to invade in proximal tracheal tissues compared to tissues of the deeper part of the nasal septum and ventral conchae. Revealing a more distinct invasion of BoHV-1 in proximal trachea, we can conclude that, in order to study an important aspect of BoHV-1 pathogenesis, the bovine upper respiratory tract mucosa explant model is the best suited model.