We previously reported that plasmacytoid dendritic cells (pDCs) infiltrating breast tumors are impaired for their interferon-α (IFN-α) production, resulting in local regulatory T cells amplification. We designed our study to decipher molecular mechanisms of such functional defect of tumor-associated pDC (TApDC) in breast cancer. We demonstrate that besides IFN-α, the production by Toll-like receptor (TLR)-activated healthy pDC of IFN-β and TNF-α but not IP-10/CXCL10 nor MIP1-α/CCL3 is impaired by the breast tumor environment. Importantly, we identified TGF-β and TNF-α as major soluble factors involved in TApDC functional alteration. Indeed, recombinant TGF-β1 and TNF-α synergistically blocked IFN-α production of TLR-activated pDC, and neutralization of TGF-β and TNF-α in tumor-derived supernatants restored pDCs' IFN-α production. The involvment of tumor-derived TGF-β was further confirmed in situ by the detection of phosphorylated Smad2 in the nuclei of TApDC in breast tumor tissues. Mechanisms of type I IFN inhibition did not involve TLR downregulation but the inhibition of IRF-7 expression and nuclear translocation in pDC after their exposure to tumor-derived supernatants or recombinant TGF-β1 and TNF-α. Our findings indicate that targeting TApDC to restore their IFN-α production might be an achievable strategy to induce antitumor immunity in breast cancer by combining TLR7/9-based immunotherapy with TGF-β and TNF-α antagonists.
Copyright © 2013 UICC.