The α7β0 isoform of the complement regulator C4b-binding protein induces a semimature, anti-inflammatory state in dendritic cells

J Immunol. 2013 Mar 15;190(6):2857-72. doi: 10.4049/jimmunol.1200503. Epub 2013 Feb 6.

Abstract

The classical pathway complement regulator C4b-binding protein (C4BP) is composed of two polypeptides (α- and β-chains), which form three plasma oligomers with different subunit compositions (α7β1, α7β0, and α6β1). We show in this article that the C4BP α7β0 isoform (hereafter called C4BP[β(-)] [C4BP lacking the β-chain]), overexpressed under acute-phase conditions, induces a semimature, tolerogenic state on human monocyte-derived dendritic cells (DCs) activated by a proinflammatory stimulus. C4BP isoforms containing β-chain (α7β1 and α6β1; C4BP[β(+)]) neither interfered with the normal maturation of DCs nor competed with C4BP(β(-)) activity on these cells. Immature DCs (iDCs) treated with C4BP(β(-)) retained high endocytic activity, but, upon LPS treatment, they did not upregulate surface expression of CD83, CD80, and CD86. Transcriptional profiling of these semimature DCs revealed that treatment with C4BP(β(-)) prevented the induction of IDO and BIC-1, whereas TGF-β1 expression was maintained to the level of iDCs. C4BP(β(-))-treated DCs were also unable to release proinflammatory Th1 cytokines (IL-12, TNF-α, IFN-γ, IL-6, IL-8) and, conversely, increased IL-10 secretion. They prevented surface CCR7 overexpression and, accordingly, displayed reduced chemotaxis, being morphologically indistinguishable from iDCs. Moreover, C4BP(β(-))-treated DCs failed to enhance allogeneic T cell proliferation, impairing IFN-γ production in these cells and, conversely, promoting CD4(+)CD127(low/neg)CD25(high)Foxp3(+) T cells. Deletion mutant analysis revealed that the complement control protein-6 domain of the α-chain is necessary for the tolerogenic activity of C4BP(β(-)). Our data demonstrate a novel anti-inflammatory and immunomodulatory function of the complement regulator C4BP, suggesting a relevant role of the acute-phase C4BP(β(-)) isoform in a number of pathophysiological conditions and potential applications in autoimmunity and transplantation.

MeSH terms

  • Anti-Inflammatory Agents, Non-Steroidal / chemistry*
  • Cell Differentiation / genetics
  • Cell Differentiation / immunology*
  • Complement C4b-Binding Protein / chemistry
  • Complement C4b-Binding Protein / genetics
  • Complement C4b-Binding Protein / physiology*
  • Dendritic Cells / chemistry*
  • Dendritic Cells / immunology*
  • Dendritic Cells / pathology
  • HEK293 Cells
  • Histocompatibility Antigens / chemistry
  • Histocompatibility Antigens / genetics
  • Histocompatibility Antigens / physiology*
  • Humans
  • Immune Tolerance / genetics
  • Inflammation / genetics
  • Inflammation / immunology
  • Inflammation / prevention & control
  • Protein Isoforms / chemistry
  • Protein Isoforms / genetics
  • Protein Isoforms / physiology

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • C4BPA protein, human
  • Complement C4b-Binding Protein
  • Histocompatibility Antigens
  • Protein Isoforms