Condensed tannins (CT) from purple prairie clover (PPC; Dalea purpurea Vent.) and sainfoin (SF; Onobrychis viciifolia) were assessed for anti-Escherichia coli activity by comparing their ability to react with proteins and liposome, cause cell aggregation, and alter outer membrane (OM) morphology and permeability. The PPC CT had greater (P < 0.01) protein-precipitating capacity than SF CT using either bovine serum albumin or ribulose 1,5-disphosphate carboxylase as model proteins. Minimum inhibitory concentration of PPC CT for two strains of E. coli and five strains of E. coli O157:H7 was four to six times lower than that of SF CT. E. coli exposed to 10 µg/mL of both CT had higher (P < 0.05) OM permeability than controls and was greater (P < 0.05) for PPC than for SF CT. Addition of both CT at 50 and 200 µg/mL caused cell aggregation which was more evident (P < 0.05) for PPC than for SF CT. Transmission electron microscopy showed electron dense material on the cell surface when cells were exposed to 50 µg/mL of PPC CT. The greater anti-E. coli activity of PPC than SF CT was due to its enhanced ability to precipitate protein that increased OM permeability and promoted cell aggregation.