Variable expression of osteogenesis imperfecta in a nuclear family is explained by somatic mosaicism for a lethal point mutation in the alpha 1(I) gene (COL1A1) of type I collagen in a parent

Am J Hum Genet. 1990 Jun;46(6):1034-40.

Abstract

Fibroblasts from a man with a mild form of osteogenesis imperfecta (OI) and from his son with perinatal lethal OI (OI type II) produced normal and abnormal type I procollagen molecules. The abnormal molecules synthesized by both cell strains contained one or two pro alpha 1(I) chains in which the glycine at position 550 of the triple-helical domain was substituted by arginine as the result of a G-to-A transition in the first base of the glycine codon. Cells from the mother produced only normal type I procollagen molecules. By allele-specific oligonucleotide hybridization to amplified genomic sequences from paternal tissues we determined that the mutant allele accounted for approximately 50% of the COL1A1 alleles in fibroblasts, 27% of those in blood, and 37% of those in sperm. These findings demonstrate that the father is mosaic for the potentially lethal mutation and suggest that the OI phenotype is determined by the nature of the mutation and the relative abundance of the normal and mutant alleles in different tissues. Furthermore, the findings make it clear that some individuals with mild to moderate forms of OI are mosaic for mutations that will be lethal in their offspring.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alleles
  • Amino Acid Sequence
  • Base Sequence
  • Cells, Cultured
  • Electrophoresis, Gel, Two-Dimensional
  • Female
  • Fibroblasts
  • Genes, Lethal
  • Humans
  • Male
  • Molecular Sequence Data
  • Mosaicism / genetics*
  • Mutation*
  • Osteogenesis Imperfecta / genetics*
  • Procollagen / genetics*

Substances

  • Procollagen