Two aspects play a key role in recently developed strategies for functional magnetic resonance imaging (fMRI) data analysis: first, it is now recognized that the human brain is a complex adaptive system and exhibits the hallmarks of complexity such as emergence of patterns arising out of a multitude of interactions between its many constituents. Second, the field of fMRI has evolved into a data-intensive, big data endeavor with large databases and masses of data being shared around the world. At the same time, ultra-high field MRI scanners are now available producing data at previously unobtainable quality and quantity. Both aspects have led to shifts in the way in which we view fMRI data. Here, we review recent developments in fMRI data analysis methodology that resulted from these shifts in paradigm.