Background: Deficient peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) function is one component of mitochondrial dysfunction in neurodegenerative diseases. Current molecular classification of such diseases is based on the predominant protein accumulating as intra- or extracellular aggregates. Experimental evidence suggests that mitochondrial dysfunction and impaired protein processing are closely interrelated. In vitro findings further indicate that PGC-1α dysfunction may contribute to protein misfolding in neurodegeneration.
Objective: To systematically evaluate the neuropathological alterations of mice lacking the expression of the full-length PGC-1α protein (FL-PGC-1α) but expressing an N-truncated fragment.
Methods: To assess the pattern of neurodegeneration-related proteins, we performed immunostaining for Tau, pTau, α-synuclein, amyloid-β, amyloid precursor protein, prion protein, FUS, TDP-43 and ubiquitin. Using hematoxylin and eosin, Klüver-Barrera and Bielschowsky silver stainings and anti-GFAP immunohistochemistry, we performed an anatomical mapping to provide a lesion profile.
Results: The immunohistochemical pattern of neurodegeneration-related proteins did not differ between FL-PGC-1α knockout and wild-type animals, and there was a complete lack of protein deposits or ubiquitin-positive inclusions. The analysis of neuropathological alterations revealed widespread vacuolation predominating in the cerebral white matter, caudate-putamen, thalamus and brainstem, and reactive astrogliosis in the brainstem and cerebellar nuclei. This morphological phenotype was thus reminiscent of human mitochondrial encephalopathies, especially the Kearns-Sayre syndrome.
Conclusion: We conclude that the lack of FL-PGC-1α per se is insufficient to recapitulate major features of neurodegenerative diseases, but evokes a pathology seen in mitochondrial encephalopathies, which makes PGC-1α-deficient mice a valuable model for this yet incurable group of diseases.
Copyright © 2013 S. Karger AG, Basel.