Background: Genetic deletion or antagonism of the neurokinin 1 receptor (NK1R) decreases alcohol intake, alcohol reward, and stress-induced alcohol relapse in rodents, while TACR1 variation is associated with alcoholism in humans.
Methods: We used L822429, a specific antagonist with high affinity for the rat NK1R, and examined whether sensitivity to NK1R blockade is altered in alcohol-preferring (P) rats. Operant alcohol self-administration and progressive ratio responding were analyzed in P-rats and their founder Wistar line. We also analyzed Tacr1 expression and binding and sequenced the Tacr1 promoter from both lines.
Results: Systemic L822429 decreased alcohol self-administration in P-rats but did not affect the lower rates of alcohol self-administration in Wistar rats. Tacr1 expression was elevated in the prefrontal cortex and the amygdala of P-rats. In central amygdala, elevated Tacr1 expression was accompanied by elevated NK1R binding. Central amygdala (but not prefrontal cortex) infusion of L822429 replicated the systemic antagonist effects on alcohol self-administration in P-rats. All P-rats, but only 18% of their founder Wistar population, were CC homozygous for a-1372G/C single nucleotide polymorphism. In silico analysis indicated that the Tacr1-1372 genotype could modulate binding of the transcription factors GATA-2 and E2F-1. Electromobility shift and luciferase reporter assays suggested that the-1372C allele confers increased transcription factor binding and transcription.
Conclusions: Genetic variation at the Tacr1 locus may contribute to elevated rates of alcohol self-administration, while at the same time increasing sensitivity to NK1R antagonist treatment.
Published by Elsevier Inc.