Background: An inflammatory response leading to organ dysfunction and failure continues to be a major problem after injury in many clinical conditions such as sepsis, severe burns, and trauma. It is increasingly recognized that atrial natriuretic peptide (ANP) possesses a broad range of biological activities, including effects on endothelial function and inflammation. A recent study has revealed that ANP exerts anti-inflammatory effects. In this study we tested the effects of human ANP (hANP) on lung injury in a model of oleic acid (OA)-induced acute lung injury (ALI) in rats.
Methods: Rats were randomly assigned to three groups (n = 6 in each group). Rats in the control group received a 0.9% solution of NaCl (1 ml × kg(-1) × h(-1)) by continuous intravenous infusion, after 30 minutes a 0.9% solution of NaCl (1 ml/kg) was injected intravenously, and then the 0.9% NaCl infusion was restarted. Rats in the ALI group received a 0.9% NaCl solution (1 ml × kg(-1) × h(-1)) intravenous infusion, after 30 minutes OA was injected intravenously (0.1 ml/kg), and then the 0.9% NaCl infusion was restarted. Rats in the hANP-treated ALI group received a hANP (0.1 µg × kg(-1) × min(-1)) infusion, after 30 minutes OA was injected intravenously (0.1 ml/kg), and then the hANP infusion was restarted. The anti-inflammation effects of hANP were evaluated by histological examination and determination of serum cytokine levels.
Results: Serum interleukin (IL)-1β, IL-6, IL-10 and tumor necrosis factor (TNF) α were increased in the ALI group at six hours. The levels of all factors were significantly lower in the hANP treated rats (P < 0.005). Similarly, levels of IL-1β, IL-6, IL-10 and TNF-α were higher in the lung tissue in the ALI group at six hours. hANP treatment significantly reduced the levels of these factors in the lungs (P < 0.005). Histological examination revealed marked reduction in interstitial congestion, edema, and inflammation.
Conclusion: hANP can attenuate inflammation in an OA-induced lung injury in rat model.