The physiological mechanisms of thermogenesis, energy balance and energy expenditure are poorly understood in poultry. The aim of this study was designed to investigate the physiological roles of avian uncoupling protein (avUCP) regulating in energy balance and thermogenesis by using three chicken breeds of existence striking genetic difference and feeding with different dietary protein levels. Three chicken breeds including broilers, hybrid chickens, and non-selection Wuding chickens were used in this study. Total 150 chicks of 1 day of age, with 50 from each breed were reared under standard conditions on starter diets to 30 days. At 30 days of age, forty chicks from each breed chicks were divided into two groups. One group was fed low protein diet (LP, 17.0 %), and the other group was fed high protein diet (HP, 19.5 %) for 60 days. Wuding chickens showed the lowest feed conversion efficiency (FCE) and the highest expressions of avUCP mRNA association with high plasma T3 and insulin concentrations. Hybrid chickens showed the lowest expressions of avUCP mRNA association with high FCE and energy efficiency. Expressions of avUCP mRNA association with diet-induced thermogenesis (DIT) were only observed in broiler and hybrid chickens. The expressions of avUCP mRNA were positive association with plasma insulin, T3 and NEFA concentrations. Age influence on the expression of avUCP mRNA were observed only for hybrid and broiler chickens. It seems that both roles of avUCP regulation thermogenesis and lipid utilisation as fuel were observed in the present study response to variation in dietary protein and breeds.