Radial heterojunction photodiodes based on a silicon nanowire arrays (SiNWs)-zinc oxide (ZnO) core-shell structure is demonstrated in this report. The heterojunction can be constructed by spin-coating ZnO nanoparticles onto SiNWs and a low temperature post-annealing process (<270 °C). The photodiode displays typical diode rectifying characteristics with an ideality factor of as low as 1.28, and shows an excellent photoresponse in both visible and near infrared regions in which a peak value of 0.54 A/W at zero bias was attained. The sensitivity is superior to that of previously reported devices fabricated with vacuum-deposition methods. In contrast, the planar silicon-ZnO junction only displays the peak photoresponsivity of 0.34 A/W. The superior performance of radial junction is ascribed to the highlight-harvesting capability, large interfacial area and efficient charge carrier collection arising from the core (SiNWs)-shell (ZnO) structure. Here, high temperature processes are dispensable by using facile solution-processed techniques, which avoid thermal minority lifetime degradation of silicon and simplify the fabrication process of the photodiodes.