Agonists of the nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) have potent insulin-sensitizing effects and inhibit atherosclerosis progression in patients with Type II diabetes. Conversely, missense mutations in the ligand-binding domain of PPARγ that render the transcription factor dominant negative (DN) cause early-onset hypertension and Type II diabetes. We tested the hypothesis that DN PPARγ-mediated interference of endogenous wild-type PPARγ in the endothelium and vascular smooth muscle exacerbates atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. Endothelium-specific expression of DN PPARγ on the ApoE(-/-) background unmasked significant impairment of endothelium-dependent relaxation in aortic rings, increased systolic blood pressure, altered expression of atherogenic markers (e.g., Cd36, Mcp1, Catalase), and enhanced diet-induced atherosclerotic lesion formation in aorta. Smooth muscle-specific expression of DN PPARγ, which induces aortic dysfunction and increased systolic blood pressure at baseline, also resulted in enhanced diet-induced atherosclerotic lesion formation in aorta on the ApoE(-/-) background that was associated with altered expression of a shared, yet distinct, set of atherogenic markers (e.g., Cd36, Mcp1, Osteopontin, Vcam1). In particular, induction of Osteopontin expression by smooth muscle-specific DN PPARγ correlated with increased plaque calcification. These data demonstrate that inhibition of PPARγ function specifically in the vascular endothelium or smooth muscle may contribute to cardiovascular disease.
Keywords: PPARγ; atherosclerosis; endothelium; smooth muscle.