Effects of the aromatic substitution pattern in cation-π sandwich complexes

J Phys Chem A. 2013 Mar 28;117(12):2598-604. doi: 10.1021/jp309740r. Epub 2013 Mar 19.

Abstract

A computational study investigating the effects of the aromatic substitution pattern on the structure and binding energies of cation-π sandwich complexes is reported. The correlation between the binding energies (Ebind) and Hammett substituent constants is approximately the same as what is observed for cation-π half-sandwich complexes. For cation-π sandwich complexes where both aromatics contain substituents the issue of relative conformation is a possible factor in the strength of the binding; however, the work presented here shows the Ebind values are approximately the same regardless of the relative conformation of the two substituted aromatics. Finally, recent computational work has shown conflicting results on whether cation-π sandwich Ebind values (Ebind,S) are approximately equal to twice the respective half-sandwich Ebind values (Ebind,HS), or if cation-π sandwich Ebind,S values are less than double the respective half-sandwich Ebind,HS values. The work presented here shows that for cation-π sandwich complexes involving substituted aromatics the Ebind,S values are less than twice the respective half-sandwich Ebind,HS values, and this is termed nonadditive. The extent to which the cation-π sandwich complexes investigated here are nonadditive is greater for B3LYP calculated values than for MP2 calculated values and for sandwich complexes with electron-donating substituents than those with electron-withdrawing groups.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Benzene / chemistry*
  • Cations
  • Electrons*
  • Metals, Alkaline Earth / chemistry*
  • Models, Chemical
  • Static Electricity
  • Thermodynamics

Substances

  • Cations
  • Metals, Alkaline Earth
  • Benzene