Background: Endothelial dysfunction is the basic and original sign of atherogenesis. Some evidences show that C-reactive protein (CRP) and perivascular adipose tissue (PVAT) play a pivotal role in atherosclerosis. However, the effects of CRP on atherosclerosis and the related mechanisms require elucidation.
Methods: The levels of basic total cholesterol, low-density lipoprotein cholesterol, triglyceride, CRP, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO) and endothelin-1 (ET-1) were respectively measured in rabbits, endothelium-dependent vasorelaxation function was also evaluated. Animals were randomly divided into two groups: PVAT(-) and PVAT(+) group (removing or keeping pericarotid adipose tissue (PCAT)). Both of the two groups were exposed to a high-fat diet for six-week, and then sustained CRP treatment was performed for a week, at this time point all the above parameters were remeasured. In addition, mRNA and protein expression of TNF-α, IL-6, and macrophage chemoattractant protein-1 (MCP-1) were respectively evaluated by Polymerase Chain Reaction and immunoblotting in PCAT and cultured adipocytes treated by CRP.
Results: High-fat diet greatly increased the serum lipids and inflammatory markers, induced endothelial dysfunction and imbalance between NO and ET-1, increased mRNA and protein expression of TNF-α, IL-6, MCP-1 and enhanced macrophage infiltration of PCAT. CRP treatment could further promote macrophage infiltration of PVAT, induce the imbalance between NO and ET-1, aggravate endothelial dysfunction especially in PVAT(+) arteries, and could also enhance the above-mentioned mRNA and protein expression in PCAT and cultured adipocytes.
Conclusions: CRP could significantly promote endothelial dysfunction in high-fat diet rabbits especially in PVAT(+) groups, which may be partly mediated by activating inflammatory reaction of adipose tissue.
Keywords: Adipose tissue; C-reactive protein; Endothelial dysfunction; Inflammation.
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.