Excessive deposition of extracellular matrix (ECM) proteins, a condition known as fibrosis, is a hallmark of Duchenne muscular dystrophy. Among the factors that trigger muscle fibrosis are transforming growth factor beta (TGF-β) and angiotensin II (Ang-II). Ang-II belongs to the renin-angiotensin system, and its biological effects are exerted by Ang-II receptors type 1 and type 2 (AT-1 and AT-2, respectively). This study aims to determine the effect of TGF-β1 on the expression of AT-1 and AT-2 receptor in skeletal muscle. C2 C12 myoblasts exposed to TGF-β1 showed a dose-dependent increase in AT-2 expression but with no effect on AT-1 levels. Injection of TGF-β1 in the skeletal muscle of mice increased the levels of AT-2 and ECM protein but unchanged AT-1 levels. We also detected higher expression levels of AT-2 receptor in dystrophic skeletal muscle of mdx mice than in normal mice. The induction of AT-2 was mediated by the canonical TGF-β pathway because under the inhibitory conditions of the kinase activity of TGFβ receptor I or the knockdown of Smad2/3 levels, TGF-β-induced AT-2 receptor increase was strongly inhibited. Furthermore, we demonstrated that p38MAPK activity in response to TGF-β is also required for AT-2 increase as evaluated by a p38MAPK inhibitor. Our results show that the levels of AT-2 but not AT-1 receptor are modulated by the pro-fibrotic factor TGF-β1 in myoblasts and mouse skeletal muscle. This finding suggests that AT-2 might be involved in the physiopathology of fibrosis in dystrophic skeletal muscle.
Keywords: AT-2 receptor; Fibrosis; TGF-β; skeletal muscle.
Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.