Current models of the cochlea can be characterized as being either based on the assumed propagation of a single slow wave, which provides good insight, or involve the solution of a numerical model, such as in the finite element method, which allows the incorporation of more detailed anatomical features. In this paper it is shown how the wave finite element method can be used to decompose the results of a finite element calculation in terms of wave components, which allows the insight of the wave approach to be brought to bear on more complicated numerical models. In order to illustrate the method, a simple box model is considered, of a passive, locally reacting, basilar membrane interacting via three-dimensional fluid coupling. An analytic formulation of the dispersion equation is used initially to illustrate the types of wave one would expect in such a model. The wave finite element is then used to calculate the wavenumbers of all the waves in the finite element model. It is shown that only a single wave type dominates the response until this peaks at the best place in the cochlea, where an evanescent, higher order fluid wave can make a significant contribution.