Theory of high Tc ferrimagnetism in a multiorbital Mott insulator

Phys Rev Lett. 2013 Feb 22;110(8):087203. doi: 10.1103/PhysRevLett.110.087203. Epub 2013 Feb 20.

Abstract

We propose a model for the multiorbital material Sr(2)CrOsO(6), an insulator with remarkable magnetic properties and the highest T(c) ~/= 725 K among all perovskites with a net moment. We derive a new criterion for the Mott transition (U(1)U(2))(1/2)>2.5W by using slave-rotor mean field theory, where W is the bandwidth and U(1(2)) are the effective Coulomb interactions on Cr(Os) including Hund's coupling. We show that Sr(2)CrOsO(6) is a Mott insulator, where the large Cr U(1) compensates for the small Os U(2). The spin sector is described by a frustrated antiferromagnetic Heisenberg model that naturally explains the net moment arising from canting and also the observed nonmonotonic magnetization M(T). We predict characteristic magnetic structure factor peaks that can be probed by neutron experiments.