Background: Fabry disease (FD) is a genetic disorder resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A) which leads to globotriaosylceramide (GL-3) accumulation in multiple tissues. We report on the safety and pharmacodynamics of migalastat hydrochloride, an investigational pharmacological chaperone given orally every other day (QOD) to females with FD.
Methods: This was an open-label, uncontrolled, Phase 2 study of 12 weeks with extension to 48 weeks in nine females with FD. Doses of 50mg, 150 mg and 250 mg were given QOD. At multiple time points, α-Gal A activity and GL-3 levels were quantified in blood cells, kidney and skin. GL-3 levels were also evaluated through skin and renal histology. Each individual GLA mutation was retrospectively categorized as being amenable or not to migalastat HCl based on an in vitro α-Gal A transfection assay developed in human embryonic kidney (HEK)-293 cells.
Results: Migalastat HCl was generally well tolerated. Patients with amenable mutations seem to demonstrate greater pharmacodynamic response to migalastat HCl compared to patients with non-amenable mutations. The greatest declines in urine GL-3 were observed in the three patients with amenable GLA mutations that were treated with 150 or 250 mg migalastat HCl QOD. Additionally, these three patients all demonstrated decreases in GL-3 inclusions in kidney peri-tubular capillaries.
Conclusions: Migalastat HCl is a candidate oral pharmacological chaperone that provides a potential novel genotype-specific treatment for FD. Treatment resulted in GL-3 substrate decrease in female patients with amenable GLA mutations. Phase 3 studies are ongoing.
Trial registration: ClinicalTrials.gov NCT00304512.
Copyright © 2013 Elsevier Inc. All rights reserved.