Sansanmycins, produced by Streptomyces sp. strain SS, are uridyl peptide antibiotics with activities against Pseudomonas aeruginosa and multidrug-resistant Mycobacterium tuberculosis. In this work, the biosynthetic gene cluster of sansanmycins, comprised of 25 open reading frames (ORFs) showing considerable amino acid sequence identity to those of the pacidamycin and napsamycin gene cluster, was identified. SsaA, the archetype of a novel class of transcriptional regulators, was characterized in the sansanmycin gene cluster, with an N-terminal fork head-associated (FHA) domain and a C-terminal LuxR-type helix-turn-helix (HTH) motif. The disruption of ssaA abolished sansanmycin production, as well as the expression of the structural genes for sansanmycin biosynthesis, indicating that SsaA is a pivotal activator for sansanmycin biosynthesis. SsaA was proved to directly bind several putative promoter regions of biosynthetic genes, and comparison of sequences of the binding sites allowed the identification of a consensus SsaA binding sequence, GTMCTGACAN₂TGTCAGKAC. The DNA binding activity of SsaA was inhibited by sansanmycins A and H in a concentration-dependent manner. Furthermore, sansanmycins A and H were found to directly interact with SsaA. These results indicated that SsaA strictly controls the production of sansanmycins at the transcriptional level in a feedback regulatory mechanism by sensing the accumulation of the end products. As the first characterized regulator of uridyl peptide antibiotic biosynthesis, the understanding of this autoregulatory process involved in sansanmycin biosynthesis will likely provide an effective strategy for rational improvements in the yields of these uridyl peptide antibiotics.