The effects of tidal volume amplitude on bronchopulmonary reactivity were investigated in three groups of 14 anesthetized paralyzed mechanically ventilated guinea pigs. Animals of group 1 served as control; in animals of group 2, both the sympathetic and parasympathetic nervous systems were blocked; in animals of group 3, only the parasympathetic system was blocked. In each group, the animals were randomly divided into two subgroups characterized by their ventilatory pattern: rate of 60/min with a 6-ml/kg tidal volume or rate of 40/min with a 9-ml/kg tidal volume. Bronchopulmonary reactivity to infused histamine was assessed by the respiratory compliance and conductance values measured during bronchoconstriction and expressed as a percentage of the corresponding basal values. In group 1 the animals ventilated with a 9-ml/kg tidal volume were found significantly less reactive than those ventilated with a 6-ml/kg tidal volume. This difference was abolished in groups 2 and 3. These results demonstrate that the effects of increased tidal volume on bronchopulmonary reactivity are vagally mediated and suggest that the decrease observed in histamine-induced bronchoconstriction is mainly due to reflex effects evoked by stretch receptor stimulation.