Early detection of cancer often requires time consuming protocols and expensive instrumentation. To address these limitations, a Rose Bengal conjugated gold nanorod (RB-GNR) platform is developed for optical detection of cancer cells. The GNRs are modified by poly(allylamine hydrochloride) and conjugated with RB molecules to produce RB-GNRs which exhibit strong optical absorption in the near-infrared (NIR) region, good stability in aqueous solution, low cytotoxicity, and high specificity to oral cancer cells. The label-free sensing assay utilizes RB-GNRs as the sensing probe and by monitoring the aggregation-induced red-shift in the NIR absorption wavelength, specific and quantitative analysis of the oral cancer cell lysate is accomplished down to a detection limit of 2000 cells/mL. By employing the RB-GNRs as an imaging probe, an imaging assay is established on a home-made NIR absorption imaging system. Based on the NIR absorption by the RB-GNRs specifically conjugated with the oral cancer cells, multi-channel, rapid and quantitative detection of oral cancer cells is demonstrated. The high sensitivity and specificity of the RB-GNR platform as demonstrated by the two complementary assays provide non-invasive optical diagnostics of oral cancer cells enabling convenient screening and monitoring.
Copyright © 2013 Elsevier Ltd. All rights reserved.