Background: Beclin1 is a well-known key regulator of autophagy, which is also a haploinsufficient tumor suppressor. Current studies revealed that down-regulation or monoallelic deletions of Beclin1 were frequently found in various cancers. The purpose of this study was to investigate the effects of Beclin1 inhibition on autophagy and Gemcitabine-induced apoptosis of pancreatic cancer cells.
Methods: Beclin1 expression was inhibited by siRNA transduction and gene expression was determined by Real-time PCR and Western blot. The effects of Beclin1 inhibition on autophagy and Gemcitabine-induced apoptosis of Miapaca2 cells were analyed through LC3 expression, cell viability, cell cycle and apoptosis by using Western blot.
Results: We observed that Beclin1 silence promoted microtubule-associated protein 1 light chain 3-II (LC3-II) protein formation and increased punctate fluorescent signals in Miapaca2 cells transfected with green fluorescent protein (GFP)-tagged LC3. Beclin1 inhibition showed a greater suppressive effect on Gemcitabine-induced apoptosis of Miapaca2 cells.
Conclusion: Our data suggested that Beclin1 silence not only up-adjusted autophagy process, but also played an important role in the regulation of apoptosis. Beclin1 inhibition could inhibit apoptosis signaling induced by Gemcitabine in Miapaca2 cells.