We hypothesise that developmental arrest in infectious larvae of parasitic nematodes is regulated by signalling pathways homologous to Caenorhabditis elegans DAF (dauer formation) pathways. Alignment of Strongyloides stercoralis (Ss) DAF-2 with DAF-2 of C. elegans and homologs of other species shows that most structural motifs in these insulin-like receptors are conserved. However, the catalytic domain of Ss-DAF-2 contains two substitutions (Q1242 and Q1256), that would result in constitutive dauer formation in C. elegans or diabetes in vertebrate animals. Ss-daf-2 also shows two alternately spliced isoforms, the constitutively expressed Ss-daf-2a, and Ss-daf-2b, which is only expressed in stages leading to parasitism.
Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.