Wilms tumor gene 1 (WT1) is overexpressed in various malignant neoplasms, and has been demonstrated as an attractive target for cancer immunotherapy. We previously reported the identification of a WT1 protein-derived, 16-mer helper peptide WT1332 that could elicit Th1-type CD4+ T-cell response and bind to multiple HLA class II molecules. In this study, we examined the feasibility of adoptive therapy using CD4+ T cells that were transduced an HLA-DPB1*05:01-restricted, WT1332-specific T-cell receptor (TCR). HLA-DPB1*05:01-restricted, WT1332-specific TCR-transduced CD4+ T cells were successfully generated using lentiviral vector and exhibited strong proliferative response and Th1-type cytokine production in response to WT1332 peptide, WT1 protein, or WT1-expressing tumor cell lysate. Furthermore, the WT1332-specific TCR-transduced CD4+ T cells lysed HLA-DPB1*05:01-positive, WT1-expressing human leukemia cells through granzyme B/perforin pathway. Furthermore, stimulation of peripheral blood mononuclear cells with both HLA-A*24:02-restricted cytotoxic T lymphocytes-epitope peptide (modified 9-mer WT1235 peptide, WT1235m) and WT1332 helper peptide in the presence of WT1332-specific TCR-transduced CD4+ T cells strikingly enhanced the induction of WT1235m-specific cytotoxic T lymphocytes. Thus, these results demonstrated the feasibility of immunotherapy based on adoptive transfer of WT1332-specific TCR-transduced CD4+ T cells for the treatment of leukemia.