Background: Dofetilide is an antiarrhythmic drug that blocks the cardiac repolarizing current IKr ((IKr, rapid component of the delayed rectifying potassium current). Previous studies have shown that (a) IKr is essential for normal cardiac function of the embryonic heart and (b) dofetilide is teratogenic in rodents. This study was undertaken to examine the mechanism by which dofetilide causes limb defects on gestational day 13 (GD 13) in the rat.
Methods: Rats were treated with dofetilide (single oral dose, 5 mg/kg) on GD 13 and embryonic heart rates assessed by ultrasound (Vevo770, VisualSonics, Toronto, Ontario, Canada) 2 hr later. Fetuses were examined for malformations on GD 20. In a separate experiment, dofetilide treatment of GD 13 rats was followed 2, 4, 12, or 24 hr with iv dosing with the hypoxia marker, pimonidazole (60 mg/kg). Embryos were collected and heart rates were assessed in vitro and hypoxia in embryo limbs analyzed.
Results: A teratogenic dose of dofetilide at a susceptible stage of development (GD 13) resulted in a period of bradycardia and arrhythmia of the embryonic heart and hypoxia in the developing limbs (GD 13) resulting in limb malformations (GD 20).
Conclusions: Drugs that induce periods of bradycardia and/or arrhythmia of the embryonic heart and cause the embryo to become hypoxic are potential human teratogens.
© 2013 Wiley Periodicals, Inc.