In neonates, the stress of social isolation can alter developing neural circuits and cause mental illness. However, the molecular and cellular bases for these effects are poorly understood. Experience-driven synaptic AMPA receptor delivery is crucial for circuit organisation during development. In the rat, whisker experience drives the delivery of glutamate receptor subunit 4 (GluA4) but not glutamate receptor subunit 1 (GluA1) to layer 4-2/3 pyramidal synapses in the barrel cortex during postnatal day (P)8-10, whereas GluA1 but not GluA4 is delivered to these synapses during P12-14. We recently reported that early social isolation disrupts experience-driven GluA1 delivery to layer 4-2/3 pyramidal synapses during P12-14. Here, we report that neonatal isolation affects even earlier stages of development by preventing experience-dependent synaptic GluA4 delivery. Thus, social isolation severely affects synaptic maturation throughout early postnatal development.
© 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.