Background: Invasive fungal infections caused by uncommon fungi have increased in recent years. Hospitalized low-birth-weight infants are at high risk for neonatal fungal infections. Pichia fabianii is a rare pathogen causing blood infection, which has reportedly caused only 4 cases of fungemia and 1 case of endocarditis worldwide. Here, we describe the first case of a P. fabianii blood infection in a premature infant in China.
Case presentation: On July 28th, a low-birth-weight (LBW, 1760 g) female infant born at 33+4 weeks of gestation was admitted to the pediatric intensive care unit with mild neonatal asphyxia. Until August 2nd, a mechanical respirator was used to assist respiration under the Continuous Positive Airway Pressure (CPAP) model. The baby had an increased body temperature and a fever. To prevent infection, Ceftriaxone Sodium (CS) was administered intravenously for three days, after which Cefepime was administered until August 13th. Chest X-rays showed suspected plaque-like shadows in the right lung. Blood cultures twice tested positive for fungal infection caused by Candida pelliculosa (recognized as Pichia fabianii later), which is first mis-identified by commercial kit. Hence, intravenous fluconazole was administered. However, cultures of other body fluids (e.g., urine, feces and sputum) tested negative for fungal infection. Routine tests and biochemistry of cerebrospinal fluid (CSF) were normal. Latex agglutination of Cryptococcus neoformans and fungi cultures in the CSF were also negative. After 14 days of intravenous fluconazole, blood was re-cultured, the result of which was negative. On August 30th, intravenous fluconazole was suspended. On Sep 3rd, the infant left the hospital in good health.
Conclusions: This is the first case of a blood infection caused by P. fabianii in a LBW premature female infant in China. Risk factors for fungal infection include premature birth, as well as mechanical invasive operation and antibacterial drug usage. Whether such risk factors necessitate prophylactic use of antifungal drugs is an important question that has yet to be fully addressed. Additionally, the pathogen P. fabianii collected in this study was resistant to amphotericin B (AMB) and itraconazole (ITR). With the exception of the azole-resistant endocarditis case, all other cases have not demonstrated such a resistance. Finally, commercial biochemical methods used in routine practice are limited in their ability to identify P. fabianii. Molecular genetic based methods are imperative for identification of uncommon fungal species from disseminated infections.