The analysis of wave-packet dynamics may be greatly simplified when viewed in phase space. While harmonic oscillators are often used as a convenient platform to study wave packets, arbitrary state preparation in these systems is more challenging. Here, we demonstrate a direct measurement of the Wigner distribution of complex photon states in an anharmonic oscillator--a superconducting phase circuit, biased in the small anharmonicity regime. We apply our method on nondispersive wave packets to explicitly show phase locking in states prepared by a frequency chirp. This method requires a simple calibration, and is easily applicable in our system out to the fifth level.