Background: Elevated atmospheric NH₃ may affect photosynthesis rates and biomass production of crops and the effect may be responsible for the soil nitrogen (N) levels. Plants were exposed to 0 and 1000 nL L⁻¹ with and without N (+N and - N) in open-top chambers (OTCs) to investigate effects of atmospheric NH₃ on photosynthetic and chlorophyll fluorescence parameters of maize plants.
Results: At two N levels, NH₃ exposure at 1000 nL L⁻¹ led to an increase in plant height, biomass production, net photosynthetic rates (P(n)) and stomatal conductance (g(s)) compared to ambient NH₃. Exposure to 1000 nL L⁻¹ NH₃ resulted in a significantly higher photochemical quenching (q(p)) and non-photochemical quenching (q(np)), while minimal fluorescence (F(o)), maximum fluorescence (F(m)) and maximum photochemical efficiency (F(v)/F(m)) were not affected. For shoots, N concentrations for - N-1000 and + N-1000 treatments were 49-50% and 26-30% higher, respectively, than those of - N-0 and + N-0 treatments.
Conclusion: No visible damage was observed and plants growing on low soil N took up more leaf-derived N than those fertilised at higher N level. Therefore, atmospheric NH₃ can be considered as a quick fertiliser for crops and should be estimated in a further study with soil N fertilisers in order to reduce the dosage.
Keywords: atmospheric ammonia; chlorophyll fluorescence; maize; nitrogen levels; open-top chambers (OTCs).
© 2013 Society of Chemical Industry.