Population density of red langurs in Sabangau tropical peat-swamp forest, Central Kalimantan, Indonesia

Am J Primatol. 2013 Aug;75(8):837-47. doi: 10.1002/ajp.22145. Epub 2013 Mar 22.

Abstract

Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cercopithecidae / physiology*
  • Ecosystem*
  • Female
  • Indonesia
  • Male
  • Population Density
  • Seasons
  • Trees*
  • Tropical Climate*