Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors

Proc Natl Acad Sci U S A. 1990 Jun;87(12):4756-60. doi: 10.1073/pnas.87.12.4756.

Abstract

We have established a model that shows cooperative interaction among preimplantation embryos and the role of growth factors on their development and growth. Two-cell mouse embryos cultured singly in 25-microliters microdrops had inferior development to blastocysts and lower cell numbers per blastocyst compared with those cultured in groups of 5 or 10. The inferior development of singly cultured embryos was markedly improved by addition of epidermal growth factor (EGF) or transforming growth factor alpha or beta 1 (TGF-alpha or TGF-beta 1) to the culture medium. The stage of embryonic development, primarily affected by these treatments, was between eight-cell/morula and blastocyst. Furthermore, blastocysts developed from eight-cell embryos cultured in groups or singly in the presence of EGF showed a higher incidence of zona hatching compared with those cultured singly in the absence of EGF. Detection of EGF receptors on the embryonic cell surface at eight-cell/morula and blastocyst stages suggests beneficial effects of EGF or TGF-alpha on preimplantation embryo development and blastocyst functions. Insulin-like growth factor I (IGF-I) had no influence on embryo development. To further document the cooperative interactions among embryos, the volume of the culture medium was doubled to 50 microliters. This increase in culture volume was even more detrimental to the development of singly cultured embryos. However, this detrimental effect was significantly reversed by EGF and reversed even more markedly by a combination of EGF and TGF-beta 1 but not by TGF-beta 1 alone. Although TGF-beta 1 plus IGF-I caused a modest improvement of embryo development, the response was not as great as shown by EGF alone. Furthermore, IGF-I had no additive effect on EGF-induced embryonic development. The study presents clear evidence that specific growth factors of embryonic and/or reproductive tract origin participate in preimplantation embryo development and blastocyst functions in an autocrine/paracrine manner.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blastocyst / cytology
  • Blastocyst / drug effects
  • Blastocyst / physiology*
  • Cell Division / drug effects
  • Epidermal Growth Factor / metabolism
  • Epidermal Growth Factor / pharmacology
  • ErbB Receptors / metabolism
  • Growth Substances / pharmacology*
  • Insulin-Like Growth Factor I / pharmacology
  • Mice
  • Organ Culture Techniques
  • Transforming Growth Factors / pharmacology

Substances

  • Growth Substances
  • Epidermal Growth Factor
  • Insulin-Like Growth Factor I
  • Transforming Growth Factors
  • ErbB Receptors