A successful cancer vaccine needs to overcome the effects of immune-suppressor cells such as Treg lymphocytes, suppressive cytokine-secreting Tr1 cells, and myeloid-derived suppressor cells (MDSCs), while enhancing tumor-specific immune responses. Given the relative poor efficacy associated with current cancer vaccines, a novel vaccine platform called DepoVax(TM) (DPX) was developed. C3 tumor-challenged mice were immunized with HPV-E7 peptide in DPX- or conventional-emulsion- (CE-) based vaccine. While control mice showed marked increase in Treg/MDSCs in spleen and blood, in mice treated with DPX-E7 the levels remained similar to tumor-free naive mice. Such differences were also seen within the tumor. Antigen-specific IL10-secreting CD4/CD8 T cells and TGF- β (+)CD8(+) T cell frequencies were increased significantly in CE-treated and control mice in contrast to DPX-E7-immunized mice. Analysis of tumor-infiltrating cells revealed higher frequency of suppressor cells in untreated controls than in DPX-E7 group while the converse was true for tumor-infiltrating CD8 T cells. Immunization of tumor-bearing HLA-A2 transgenic mice with human vaccine DPX-0907, a peptide-based vaccine for breast/ovarian/prostate cancers, showed efficient induction of immune response to cancer peptides despite the presence of suppressor cells. Thus, this study provides the rationale for using DPX-based cancer vaccines in immune-suppressed cancer patients, to induce effective anticancer immunity.