Simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas chromatography

J Agric Food Chem. 2013 Apr 24;61(16):3821-7. doi: 10.1021/jf400269q. Epub 2013 Apr 12.

Abstract

How to determine trace multipesticide residues in fruits is an important problem. This paper reports a molecularly imprinted polymer (MIP) that was prepared using 4-(dimethoxyphosphorothioylamino)butanoic acid as the template, acrylamide as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The novel imprinted polymer was characterized by static and kinetic adsorption experiments, and it exhibited good recognition ability and fast adsorption-desorption dynamicd toward trichlorfon, malathion, acephate, methamidophos, omethoate, dimethoate, phosphamidon, monocrotophos, and methyl parathion. Using this imprinted polymer as sorbent, matrix solid-phase dispersion coupled to gas chromatography for simultaneous determination of nine trace organophosphorus pesticide residues was first presented. Under the optimized conditions, the LOD (S/N = 3) of this method for the nine organophosphorus was 0.3-1.6 μg kg(-1); the RSD for three replicate extractions ranged from 1.2 to 4.8%. The apple and pear samples spiked with nine organophosphate pesticides at levels of 20 and 100 μg kg(-1) were determined according to this method with good recoveries ranging from 81 to 105%. Moreover, this developed method was successfully applied to the quantitative detection of the nine organophosphorus pesticide residues in orange samples.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Chromatography, Gas / methods*
  • Cross-Linking Reagents
  • Food Contamination / analysis*
  • Fruit / chemistry*
  • Methacrylates
  • Molecular Imprinting / methods*
  • Organophosphorus Compounds / analysis*
  • Pesticide Residues / analysis*
  • Polymers

Substances

  • Cross-Linking Reagents
  • Methacrylates
  • Organophosphorus Compounds
  • Pesticide Residues
  • Polymers
  • ethylene dimethacrylate