The functional significance for activation of inflammatory transcription factors, such as signal transducer and activator of transcription (STAT3), nuclear factor (NF)κB or NF-interleukin (IL)6 and their contribution to the induction of brain controlled sickness responses, such as fever, during infection and inflammation is unknown. Using AG490, previously shown to inhibit the STAT3- and NF-IL6-signaling pathway, we therefore investigated the central involvement of these two signaling pathways in mediating sickness behavior, fever and accompanying brain inflammation induced by peripheral lipopolysaccharide (LPS)-stimulation. Rats pre-treated i.c.v. with AG490 1 h before the i.p. LPS-challenge (100 μg/kg) showed a modestly exaggerated fever, attenuated adipsia and almost unimpaired locomotor activity compared to LPS-controls receiving vehicle (i.c.v.). The LPS-induced anorexia was not altered and AG490 did not have any effect on rats receiving PBS (i.p.). We did observe effects of AG490 on STAT3-signaling at 4 h, while AG490-mediated changes in brain activity of inflammatory transcription factors at 8 h were not significant. Increased NF-IL6 and suppressor of cytokines 3 mRNA-expression in AG490/LPS-treated rats were indicative of a compensative activation at 24 h. Moreover, a significant decrease in hypothalamic anti-inflammatory IL-10-expression and an increase in inflammatory microsomal prostaglandin E synthase (mPGES) mRNA-expression 8 h after LPS-injection was revealed in AG490 pre-treated animals compared to solvent-treated LPS-controls. In summary, we have shown a dissociation between the effects of central AG490 treatment on fever and components of sickness behavior, which appears to be related to reduced IL-10 and increased mPGES-expression in the brain. Thus, AG490 might have therapeutic potential to reduce sickness behavior.
Copyright © 2013 Elsevier Ltd. All rights reserved.