Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists

Int J Mol Sci. 2013 Apr 2;14(4):7193-230. doi: 10.3390/ijms14047193.

Abstract

The formyl peptide receptor 2 (FPR2) is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR) family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ)-42 and prion protein (Prp)106-126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP)-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC), protein kinase C (PKC) isoforms, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, the mitogen-activated protein kinase (MAPK) pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2 agonists.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Bacteria / metabolism
  • Humans
  • Ligands
  • Peptide Library
  • Peptides / pharmacology
  • Receptors, Formyl Peptide / agonists*
  • Receptors, Formyl Peptide / metabolism
  • Signal Transduction* / drug effects

Substances

  • Ligands
  • Peptide Library
  • Peptides
  • Receptors, Formyl Peptide