Untransformed cytosol receptors for progesterone (PR), androgen (AR), estrogen (ER), and glucocorticosteroid (GR) in rabbit tissues contain a 59-kDa protein (p59) (Tai, P.K.K., Maeda, Y., Nakao, K., Wakim, N.G., Duhring, J.L., and Faber, L.E. (1986) Biochemistry 25, 5269-5275) and a 90-kDa heat shock protein (hsp90). In the present study, receptors from calf uterus (PR, AR, ER, and GR) and from human breast cancer MCF7 cells (PR and GR) were also shown to be comprised of hsp90 and p59. These heterooligomer receptor complexes were stabilized both by transition metal oxyanions (molybdate and tungstate) and chemical cross-linking with dimethylpimelimidate. In 0.4 M KCl, tungstate-stabilized (but not molybdate-stabilized) PR, AR, ER, and GR retained hsp90, but lost p59. Dimethylpimelimidate cross-linking prevented p59 dissociation from hsp90-receptor complexes. Stabilization with tungstate and/or cross-linking permitted immunoaffinity purification of untransformed rabbit as well as calf PR and ER on EC1-Affi-Gel 10 column (an anti-p59 immunoadsorbant). Combined immunoaffinity purification and cross-linking experiments indicated that p59 is bound to hsp90 in the cytosol. We propose that in the nontransformed steroid receptor, p59 interacts with hsp90 rather than with the hormone binding subunit.