MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis

Plant J. 2013 Jul;75(1):130-145. doi: 10.1111/tpj.12191. Epub 2013 May 6.

Abstract

Symbiotic associations between leguminous plants and nitrogen-fixing rhizobia culminate in the formation of specialized organs called root nodules, in which the rhizobia fix atmospheric nitrogen and transfer it to the plant. Efficient biological nitrogen fixation depends on metabolites produced by and exchanged between both partners. The Medicago truncatula-Sinorhizobium meliloti association is an excellent model for dissecting this nitrogen-fixing symbiosis because of the availability of genetic information for both symbiotic partners. Here, we employed a powerful imaging technique - matrix-assisted laser desorption/ionization (MALDI)/mass spectrometric imaging (MSI) - to study metabolite distribution in roots and root nodules of M. truncatula during nitrogen fixation. The combination of an efficient, novel MALDI matrix [1,8-bis(dimethyl-amino) naphthalene, DMAN] with a conventional matrix 2,5-dihydroxybenzoic acid (DHB) allowed detection of a large array of organic acids, amino acids, sugars, lipids, flavonoids and their conjugates with improved coverage. Ion density maps of representative metabolites are presented and correlated with the nitrogen fixation process. We demonstrate differences in metabolite distribution between roots and nodules, and also between fixing and non-fixing nodules produced by plant and bacterial mutants. Our study highlights the benefits of using MSI for detecting differences in metabolite distributions in plant biology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Gene Expression Regulation, Plant
  • Gentisates / chemistry
  • Medicago truncatula / metabolism*
  • Medicago truncatula / microbiology
  • Metabolome*
  • Molecular Imaging / methods*
  • Naphthols / chemistry
  • Nitrogen / metabolism
  • Nitrogen Fixation
  • Phenotype
  • Plant Root Nodulation
  • Plant Roots / metabolism
  • Plant Roots / microbiology
  • Root Nodules, Plant
  • Sinorhizobium meliloti / physiology*
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization / methods*
  • Symbiosis

Substances

  • Gentisates
  • Naphthols
  • 1-(N-dimethyl)amino-7-naphthol
  • Nitrogen
  • 2,5-dihydroxybenzoic acid