Conopeptides are a diverse array of small linear and reticulated peptides that interact with high potency and selectivity with a large diversity of receptors and ion channels. They are used by cone snails for prey capture or defense. Recent advances in venom gland transcriptomic and venom peptidomic/proteomic technologies combined with bioactivity screening approaches lead to the identification of new toxins with original pharmacological profiles. Here, from transcriptomic/proteomic analyses of the Conus consors cone snail, we identified a new conopeptide called τ-CnVA, which displays the typical cysteine framework V of the T1-conotoxin superfamily. This peptide was chemically synthesized and its three-dimensional structure was solved by NMR analysis and compared to that of TxVA belonging to the same family, revealing very few common structural features apart a common orientation of the intercysteine loop. Because of the lack of a clear biological function associated with the T-conotoxin family, τ-CnVA was screened against more than fifty different ion channels and receptors, highlighting its capacity to interact selectively with the somatostatine sst3 receptor. Pharmacological and functional studies show that τ-CnVA displays a micromolar (Ki of 1.5μM) antagonist property for the sst3 receptor, being currently the only known toxin to interact with this GPCR subfamily.
Copyright © 2013 Elsevier Inc. All rights reserved.