The Min system of Escherichia coli is involved in mediating placement of the cell division site at the midcell; this is accomplished through partitioning of the cell division inhibitor MinC to the cell poles to block aberrant polar division. The partitioning of MinC is achieved through its interaction with MinDE, which alternates its cellular distribution periodically between opposite cell poles throughout the cell cycle. This dynamic oscillation is the result of intricate molecular interactions occurring between the three Min proteins on the membrane in a spatiotemporal manner. In this minireview, we discuss recent developments in understanding the molecular mechanisms of the E. coli Min system from cellular, biochemical and biophysical perspectives. In addition, we propose a model that involves the balancing of different molecular interactions at different stages of the oscillation cycle.
© 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.