In the present study, we analyzed the role of purinergic P2X7 receptor in Mycobacterium tuberculosis infection and host interaction mechanisms in vitro and in vivo. For experimental procedures, a macrophage murine cell line RAW 264.7, and male Swiss, wild-type C57BL/6 and P2X7 receptor knockout (P2X7R−/−) mice were used throughout this study. We have demonstrated that treatment of RAW 264.7 cells with ATP (3 and 5 mM) resulted in a statistically significant reduction of M. tuberculosis-colony-forming units. The purinergic P2X7 receptor expression was found significantly augmented in the lungs of mice infected with M. tuberculosis H37Rv. Infected wild-type mice showed a marked increase in the spleen weight, in comparison to non-infected animals. Furthermore, M. tuberculosis-infected P2X7R−/− mice showed an increase of M. tuberculosis burden in lung tissue, when compared to infected wild-type mice. In P2X7R−/− spleens, we observed a significant decrease in the populations of Treg (CD4+Foxp3+), T cells (CD4+, CD8+CD25+ and CD4+CD25+), dendritic cells (CD11c+) and B220+ cells. However, a significant increase in CD11b+ cells was observed in P2X7R−/− mice, when compared to wild-type animals. In the lungs, P2X7R−/− M. tuberculosisinfected mice exhibited pulmonary infiltrates containing an increase of Treg cells (CD4+Foxp3+), T cells (CD4+ and CD8+) and a decrease in the B220+ cells, when compared with wild-type M. tuberculosis-infected mice. The findings observed in the present study provide novel evidence on the role of P2X7 receptors in the pathogenesis of tuberculosis.
Copyright © 2013 Elsevier GmbH. All rights reserved.