Novel CuO/Cu2O hollow polyhedrons with porous shells were fabricated by thermal decomposition of coordination compound [Cu3(btc)2]n (btc = benzene-1,3,5-tricarboxylate) polyhedrons at 350 °C. When tested as anode materials for lithium-ion batteries, these hollow polyhedrons exhibited a reversible lithium storage capacity as high as 740 mA h g(-1) at 100 mA g(-1) after 250 cycles even if the charge-discharge process is stopped for one week during the test time.