Acute myeloid leukemia (AML) is the most common acute leukemia in the USA, which despite recent advances, continues to have a high mortality rate. It is a biologically active disease characterized by numerous cytogenetic abnormalities and multiple genetic mutations. Next-generation sequencing (NGS) will perhaps not reveal all the factors that make AML a complex disease, but does have the potential to affect the diagnosis and risk stratification of AML patients and allow more personalized therapy. AML cells are easy to obtain from the patient and samples are only minimally contaminated with normal cells, which makes it an attractive cancer to study. Several studies have now demonstrated that the majority of AML patients are cytogenetically normal and the genome of these patients may contain fewer mutations than cancer genomes that are highly aneuploidy, suggesting that mutations in diploid genomes are more likely to be pathogenetically relevant. Whole-genome, exome, transcriptome, and targeted gene sequencing studies have been conducted successfully in AML and have provided with valuable information. The challenges for the future include: reducing the cost of sequencing, understanding epigenetic changes, managing data across various platforms, separating the driver mutations from the sea of passenger mutations, and finally, educating future generations to allow a better understanding and easy availability of these complex methodologies.