Neural circuits are fundamental for brain functions. However, obtaining long range continuous projections of neurons in the entire brain is still challenging. Here a two-photon fluorescence micro-optical sectioning tomography (2p-fMOST) method is developed for high-throughput, high-resolution visualization of the brain circuits. Two-photon imaging technology is used to obtain high resolution, and acoustical optical deflector (AOD), an inertia-free beam scanner is used to realize fast and prolonged stable imaging. The combination of these techniques with imaging and then sectioning method of a plastic-embedded mouse brain facilitated the acquisition of a three-dimensional data set of a fluorescent mouse brain with a resolution adequate to resolve the spines. In addition, the brain circuit tracing ability is showed by several neurons projecting across different brain regions. Besides brain imaging, 2p-fMOST could be used in many studies that requires sub-micro resolution or micro resolution imaging of a large sample.