Objective: Pulse pressure (PP), a strong predictor of cardiovascular events in type 2 diabetes, is a composite measure affected by several hemodynamic factors. Little is known about the hemodynamic determinants of central PP in type 2 diabetes or whether abnormalities in central pulsatile hemodynamics are already present in individuals with impaired fasting glucose (IFG). In a population-based study, we aimed to compare central PP and its hemodynamic determinants among adults with normal fasting glucose (n = 1654), IFG (n = 240), and type 2 diabetes (n = 33).
Research design and methods: We measured carotid pressure, left ventricular outflow, aortic root diameter, carotid artery flow, and distension in order to measure various structural and hemodynamic arterial parameters.
Results: IFG was associated with a greater mean arterial pressure (MAP) but was not associated with intrinsic aortic stiffening or abnormal aortic pulsatile indices after adjustment for MAP. After adjustment for age, sex, and MAP, type 2 diabetes was associated with a higher aortic root characteristic impedance (Zc), aortic root elastance-thickness product (Eh), and aortic root pulse wave velocity (but not aortic root diameter), a greater carotid-femoral pulse wave velocity, and lower total arterial compliance and wave reflection magnitude. Carotid size, Zc, distensibility, or Eh did not significantly differ between the groups.
Conclusions: Type 2 diabetes, but not IFG, is associated with greater large artery stiffness, without abnormalities in aortic root diameter or carotid stiffness. Subjects with type 2 diabetes demonstrate a decreased reflection magnitude, which may indicate an increased penetration of pulsatile energy to distal vascular beds.