Introduction: G-protein-coupled receptors (GPCRs) form one of the largest groups of potential targets for novel medications. Low druggability of many GPCR targets and inefficient sampling of chemical space in high-throughput screening expertise however often hinder discovery of drug discovery leads for GPCRs. Fragment-based drug discovery is an alternative approach to the conventional strategy and has proven its efficiency on several enzyme targets. Based on developments in biophysical screening techniques, receptor stabilization and in vitro assays, virtual and experimental fragment screening and fragment-based lead discovery recently became applicable for GPCR targets.
Areas covered: This article provides a review of the biophysical as well as biological detection techniques suitable to study GPCRs together with their applications to screen fragment libraries and identify fragment-size ligands of cell surface receptors. The article presents several recent examples including both virtual and experimental protocols for fragment hit discovery and early hit to lead progress.
Expert opinion: With the recent progress in biophysical detection techniques, the advantages of fragment-based drug discovery could be exploited for GPCR targets. Structural information on GPCRs will be more abundantly available for early stages of drug discovery projects, providing information on the binding process and efficiently supporting the progression of fragment hit to lead. In silico approaches in combination with biological assays can be used to address structurally challenging GPCRs and confirm biological relevance of interaction early in the drug discovery project.