UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature

ACS Appl Mater Interfaces. 2013 May 22;5(10):4285-92. doi: 10.1021/am400500a. Epub 2013 May 13.

Abstract

SnO2-core/ZnO-shell nanowires were synthesized using a two-step process: the synthesis of SnO2 nanowires by the thermal evaporation of Sn powders followed by the atomic layer deposition of ZnO. The room temperature NO2 gas sensing properties of the nanowires under ultraviolet (UV) illumination were examined. The cores and shells of the nanowires were primitive tetragonal-structured single crystal SnO2 and wurtzite-structured single crystal ZnO, respectively. The responses of multiple networked SnO2 nanowire sensors were increased 2-3-fold at NO2 concentrations ranging from 1 to 5 ppm by encapsulating the nanowires with ZnO. The SnO2-core/ZnO-shell nanowire sensors showed a remarkably enhanced response under UV illumination. The sensing mechanism of the core/shell nanowires under UV illumination is also discussed.