Background: The nonstationary property of electromyography (EMG) signals usually makes the pattern recognition (PR) based methods ineffective after some time in practical application for multinational prosthesis. The conventional EMG PR, which is accomplished in two separate steps: training and testing, ignores the mismatch between training and testing conditions and often discards the useful information in testing dataset.
Method: This paper presents a novel self-enhancing approach to improve the classification performance of the electromyography (EMG) pattern recognition (PR). The proposed self-enhancing method incorporates the knowledge beyond the training condition to the classifiers from the testing data. The widely-used linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are extended to self-enhancing LDA (SELDA) and self-enhancing QDA (SEQDA) by continuously updating their model parameters such as the class mean vectors, the class covariances and the pooled covariance. Autoregressive (AR) and Fourier-derived cepstral (FC) features are adopted. Experimental data in two different protocols are used to evaluate performance of the proposed methods in short-term and long-term application respectively.
Results: In protocol of short-term EMG, based on AR and FC, the recognition accuracy of SEQDA and SELDA is 2.2% and 1.6% higher than conventional that of QDA and LDA respectively. The mean results of SEQDA(C) and SEQDA (M) are improved by 2.2% and 0.75% for AR, and 1.99% and 1.1% for FC respectively when compared to QDA. The mean results of SELDA(C) and SELDA (M) are improved by 0.48% and 1.55% for AR, and 0.67% and 1.22% for FC when compared to LDA. In protocol of long-term EMG, the mean result of SEQDA is 3.15% better than that of QDA.
Conclusion: The experimental results show that the self-enhancing classifiers significantly outperform the original versions using both AR and FC coefficient feature sets. The performance of SEQDA is superior to SELDA. In addition, preliminary study on long-term EMG data is conducted to verify the performance of SEQDA.